Copied to
clipboard

G = C2×C42.78C22order 128 = 27

Direct product of C2 and C42.78C22

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C42.78C22, C42.354D4, C42.705C23, (C4×C8)⋊71C22, C4⋊C4.83C23, (C2×C8).490C23, (C2×C4).328C24, (C2×D4).97C23, C23.872(C2×D4), (C22×C4).565D4, (C2×Q8).85C23, Q8⋊C461C22, C4.20(C4.4D4), C22.97(C4○D8), C42.C233C22, (C22×C8).519C22, C22.588(C22×D4), D4⋊C4.143C22, (C22×C4).1550C23, (C2×C42).1123C22, C4.4D4.132C22, C22.82(C4.4D4), (C22×D4).365C22, (C22×Q8).298C22, (C2×C4×C8)⋊21C2, C2.28(C2×C4○D8), C4.37(C2×C4○D4), (C2×C4).693(C2×D4), (C2×Q8⋊C4)⋊19C2, (C2×C42.C2)⋊33C2, C2.39(C2×C4.4D4), (C2×D4⋊C4).19C2, (C2×C4).707(C4○D4), (C2×C4⋊C4).620C22, (C2×C4.4D4).38C2, SmallGroup(128,1862)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C42.78C22
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C2×C42.78C22
C1C2C2×C4 — C2×C42.78C22
C1C23C2×C42 — C2×C42.78C22
C1C2C2C2×C4 — C2×C42.78C22

Generators and relations for C2×C42.78C22
 G = < a,b,c,d,e | a2=b4=c4=d2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1c2, be=eb, dcd=c-1, ce=ec, ede-1=b2cd >

Subgroups: 404 in 206 conjugacy classes, 100 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C4×C8, D4⋊C4, Q8⋊C4, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4.4D4, C4.4D4, C42.C2, C42.C2, C22×C8, C22×D4, C22×Q8, C2×C4×C8, C2×D4⋊C4, C2×Q8⋊C4, C42.78C22, C2×C4.4D4, C2×C42.C2, C2×C42.78C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C4○D8, C22×D4, C2×C4○D4, C42.78C22, C2×C4.4D4, C2×C4○D8, C2×C42.78C22

Smallest permutation representation of C2×C42.78C22
On 64 points
Generators in S64
(1 53)(2 54)(3 55)(4 56)(5 49)(6 50)(7 51)(8 52)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)
(1 64 17 10)(2 57 18 11)(3 58 19 12)(4 59 20 13)(5 60 21 14)(6 61 22 15)(7 62 23 16)(8 63 24 9)(25 41 55 36)(26 42 56 37)(27 43 49 38)(28 44 50 39)(29 45 51 40)(30 46 52 33)(31 47 53 34)(32 48 54 35)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 27)(2 56)(3 25)(4 54)(5 31)(6 52)(7 29)(8 50)(9 35)(10 47)(11 33)(12 45)(13 39)(14 43)(15 37)(16 41)(17 49)(18 26)(19 55)(20 32)(21 53)(22 30)(23 51)(24 28)(34 64)(36 62)(38 60)(40 58)(42 61)(44 59)(46 57)(48 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,53)(2,54)(3,55)(4,56)(5,49)(6,50)(7,51)(8,52)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,64,17,10)(2,57,18,11)(3,58,19,12)(4,59,20,13)(5,60,21,14)(6,61,22,15)(7,62,23,16)(8,63,24,9)(25,41,55,36)(26,42,56,37)(27,43,49,38)(28,44,50,39)(29,45,51,40)(30,46,52,33)(31,47,53,34)(32,48,54,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,27)(2,56)(3,25)(4,54)(5,31)(6,52)(7,29)(8,50)(9,35)(10,47)(11,33)(12,45)(13,39)(14,43)(15,37)(16,41)(17,49)(18,26)(19,55)(20,32)(21,53)(22,30)(23,51)(24,28)(34,64)(36,62)(38,60)(40,58)(42,61)(44,59)(46,57)(48,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,53)(2,54)(3,55)(4,56)(5,49)(6,50)(7,51)(8,52)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,64,17,10)(2,57,18,11)(3,58,19,12)(4,59,20,13)(5,60,21,14)(6,61,22,15)(7,62,23,16)(8,63,24,9)(25,41,55,36)(26,42,56,37)(27,43,49,38)(28,44,50,39)(29,45,51,40)(30,46,52,33)(31,47,53,34)(32,48,54,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,27)(2,56)(3,25)(4,54)(5,31)(6,52)(7,29)(8,50)(9,35)(10,47)(11,33)(12,45)(13,39)(14,43)(15,37)(16,41)(17,49)(18,26)(19,55)(20,32)(21,53)(22,30)(23,51)(24,28)(34,64)(36,62)(38,60)(40,58)(42,61)(44,59)(46,57)(48,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,53),(2,54),(3,55),(4,56),(5,49),(6,50),(7,51),(8,52),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62)], [(1,64,17,10),(2,57,18,11),(3,58,19,12),(4,59,20,13),(5,60,21,14),(6,61,22,15),(7,62,23,16),(8,63,24,9),(25,41,55,36),(26,42,56,37),(27,43,49,38),(28,44,50,39),(29,45,51,40),(30,46,52,33),(31,47,53,34),(32,48,54,35)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,27),(2,56),(3,25),(4,54),(5,31),(6,52),(7,29),(8,50),(9,35),(10,47),(11,33),(12,45),(13,39),(14,43),(15,37),(16,41),(17,49),(18,26),(19,55),(20,32),(21,53),(22,30),(23,51),(24,28),(34,64),(36,62),(38,60),(40,58),(42,61),(44,59),(46,57),(48,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

44 conjugacy classes

class 1 2A···2G2H2I4A···4L4M···4R8A···8P
order12···2224···44···48···8
size11···1882···28···82···2

44 irreducible representations

dim11111112222
type+++++++++
imageC1C2C2C2C2C2C2D4D4C4○D4C4○D8
kernelC2×C42.78C22C2×C4×C8C2×D4⋊C4C2×Q8⋊C4C42.78C22C2×C4.4D4C2×C42.C2C42C22×C4C2×C4C22
# reps112281122816

Matrix representation of C2×C42.78C22 in GL5(𝔽17)

160000
01000
00100
000160
000016
,
160000
07800
0151000
000013
00040
,
10000
01000
00100
000016
00010
,
10000
016000
06100
000160
00001
,
10000
06200
081100
000314
00033

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,7,15,0,0,0,8,10,0,0,0,0,0,0,4,0,0,0,13,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,16,0],[1,0,0,0,0,0,16,6,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,1],[1,0,0,0,0,0,6,8,0,0,0,2,11,0,0,0,0,0,3,3,0,0,0,14,3] >;

C2×C42.78C22 in GAP, Magma, Sage, TeX

C_2\times C_4^2._{78}C_2^2
% in TeX

G:=Group("C2xC4^2.78C2^2");
// GroupNames label

G:=SmallGroup(128,1862);
// by ID

G=gap.SmallGroup(128,1862);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,680,758,100,2804,172,4037,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1*c^2,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=b^2*c*d>;
// generators/relations

׿
×
𝔽